张胜良,硕士生导师,2013于复旦大学数学科学学院获理学博士学位,现任南京林业大学经济管理学院讲师、南京林业大学数字林业与绿色发展研究院研究人员。长期从事实物期权理论及其在林业资源管理问题中的应用研究,结合中国林业碳汇市场实际,针对林业碳汇项目具有期权价值的特点,聚焦新型实物期权法在造林碳汇项目价值评估中的应用研究,探索项目价值攀升机制,并以此为据提出林业碳汇发展建议与支持政策。承担国家科学基金及教育部人文社科研究规划基金多项, 以第一作者在权威期刊 Journal of scientific computing、Journal of computational physics ,SCI一区期刊 Computers and Mathematics with Applications、Applied Mathematics and Computation ,高水平期刊 Journal of Computational and Applied Mathematics、Engineering Analysis with Boundary Elements、Computational and Applied Mathematics 等发表论文20余篇。担任美国数学学会(AMS)评论员(编号:141581), 担任Journal of computational physics等多个权威期刊刊源审稿人。
一、发表论文
[1] Shengliang Zhang, Meshless symplectic and multi-symplectic local RBF collocation methods for Hamiltonian PDEs,Journal of scientific computing (2021)(SCI Q1, 应用数学 类T1期刊)
[2] Shengliang Zhang, Meshless symplectic and multi-symplectic local RBF collocation methods for nonlinear schrodinger equation,Journal of computational physics (2021)(SCI Q1,Top期刊,跨学科应用数学类T1期刊)
[3] Shengliang Zhang, Zhengjie Sun*, Alpesh Kumar, Meshless symplectic and multi-symplectic scheme for the coupled nonlinear Schr?dinger system based on local RBF approximation, Computers and Mathematics with Applications 134 (2023)(SCI Q1,Top期刊)
[4] Shengliang Zhang , A meshless multi-symplectic local radial basis function collocation scheme for the “good” Boussinesq equation, Applied Mathematics and Computation 431 (2022)(SCI Q1,Top期刊)
[5] Shengliang Zhang,Yu Yang, Meshless symplectic and multi-symplectic algorithm for Klein–Gordon–Schr?dinger system with local RBF collocation, Engineering Analysis with Boundary Elements 143 (2022)(SCI Q1)
[6] Shengliang Zhang*, Hongqiang Yang, Yu Yang, A multiquadric quasi-interpolations method for CEV option pricing model,Journal of Computational and Applied Mathematics 347(2019) (SSCI, SCI Q1, Top期刊)
[7] Shengliang Zhang, A symplectic procedure for two-dimensional coupled seismic wave equations using radial basis functions interpolation,Computers and Mathematics with Applications (2018)(SCI Q1,Top期刊)
[8] Shengliang Zhang, Radial basis functions method for valuing options: a multinomial tree approach,Journal of Computational and Applied Mathematics 319(2017) (SSCI, SCI Q1, Top期刊)
[9] Shengliang Zhang*, Yu Yang, Hongqiang Yang, A meshless symplectic algorithm for nonlinear wave equation using highly accurate RBFs quasi-interpolation,Applied Mathematics and Computation 314 (2017)(SCI Q1,Top期刊)
[10] Shengliang Zhang, A meshless symplectic method for two-dimensional Schodinger equation with radial basis functions,Computers and Mathematics with Applications 72(2016)(SCI Q1,Top期刊)
[11] Shengliang Zhang,Convergence of a highly accurate quasi-interpolation method for options pricing,Journal of Financial engineering. Vol. 4, No. 4 (2017)(ESCI)
[12] Zongmin Wu, Shengliang Zhang*, Conservative multiquadric quasi-interpolation method for Hamiltonian wave equations, Engineering Analysis with Boundary Elements37 (2013)(SCI Q1)
[13] Zongmin Wu, Shengliang Zhang*, A Meshfree symplectic Algorithm for multi-dimensional Hamiltonian System with Radial Basis Approximation,Engineering Analysis with Boundary Elements 50(2015)(SCI Q1)
[14]Shengliang Zhang*, Liping Zhang, Symplectic multiquadric quasi-interpolation approximations of KdV equation, Filomat (2018)(SCI Q2)
[15] Shengliang Zhang, Liping Zhang* , A Flexible Symplectic Scheme for Two-Dimensional Schrodinger Equation with Highly Accurate RBFs Quasi-Interpolation, Filomat (2019)(SCI Q2)
[16] Shengliang Zhang, A highly accurate RBF quasi-interpolation method for approximating the derivatives, Computational and Applied Mathematics(2021)(SCI Q2)
[17] Shengliang Zhang, Symplectic Radial Basis Approximation of Multi-variate Hamiltonian PDEs,Iran J Sci Technol Trans Sci A(2019)(SCI Q3)
[18]张胜良,黄俊贤,求解时间分数阶B-S模型的高阶MQ拟插值方法,数学物理学报(2022)(CSCD)
[19]张胜良,基于径向基逼近的KdV方程的无网格辛算法,应用数学(2021)(CSCD)
二、主持参与项目
[1]教育部人文社会科学研究青年基金项目(21YJC790162): 基于两种市场决策机制的林业碳汇价值评估研究. 2021-2024, 主持
[2]江苏省社科基金一般项目(22EBY010):“双碳”目标下苏北杨树产业碳汇价值实现机制及支持政策研究. 2022-2024,主持
[3]国家社科基金一般项目(22BGY190): 绿色金融改革创新驱动工业企业绿色转型的效应评估及政策优化研究. 2022-2025, 参与
[4]国家社科基金一般项目(22BGL077):“双碳”目标下重污染企业绿色转型的财务脆弱性与纾解政策研究. 2022-2025,参与